Identification and characterization of re-citrate synthase in Syntrophus aciditrophicus.

نویسندگان

  • Marie Kim
  • Huynh Le
  • Michael J McInerney
  • Wolfgang Buckel
چکیده

Glutamate is usually synthesized from acetyl coenzyme A (acetyl-CoA) via citrate, isocitrate, and 2-oxoglutarate. Genome analysis revealed that in Syntrophus aciditrophicus, the gene for Si-citrate synthase is lacking. An alternative pathway starting from the catabolic intermediate glutaconyl-CoA via 2-hydroxyglutarate could be excluded by genomic analysis. On the other hand, a putative gene (SYN_02536; NCBI gene accession no. CP000252.1) annotated as coding for isopropylmalate/citramalate/homocitrate synthase has been shown to share 49% deduced amino acid sequence identity with the gene encoding Re-citrate synthase of Clostridium kluyveri. We cloned and overexpressed this gene in Escherichia coli together with the genes encoding the chaperone GroEL. The recombinant homotetrameric enzyme with a C-terminal Strep-tag (4 × 72,892 Da) was separated from GroEL on a Strep-Tactin column by incubation with ATP, K(+), and Mg(2+). The pure Re-citrate synthase used only acetyl-CoA and oxaloacetate as the substrates. As isolated, the enzyme contained stoichiometric amounts of Ca(2+) (0.9 Ca/73 kDa) but achieved higher specific activities in the presence of Mn(2+) (1.2 U/mg) or Co(2+) (2.0 U/mg). To determine the stereospecificity of the enzyme, [(14)C]citrate was enzymatically synthesized from oxaloacetate and [1-(14)C]acetyl-CoA; the subsequent cleavage by Si-citrate lyase yielded unlabeled acetate and labeled oxaloacetate, demonstrating that the enzyme is a Re-citrate synthase. The production of Re-citrate synthase by S. aciditrophicus grown axenically on crotonate was revealed by synthesis of [(14)C]citrate in a cell extract followed by stereochemical analysis. This result was supported by detection of transcripts of the Re-citrate synthase gene in axenic as well as in syntrophic cultures using quantitative reverse transcriptase PCR (qRT-PCR).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two pathways for glutamate biosynthesis in the syntrophic bacterium Syntrophus aciditrophicus.

The anaerobic metabolism of crotonate, benzoate, and cyclohexane carboxylate by Syntrophus aciditrophicus grown syntrophically with Methanospirillum hungatei provides a model to study syntrophic cooperation. Recent studies revealed that S. aciditrophicus contains Re-citrate synthase but lacks the common Si-citrate synthase. To establish whether the Re-citrate synthase is involved in glutamate s...

متن کامل

Benzoate fermentation by the anaerobic bacterium Syntrophus aciditrophicus in the absence of hydrogen-using microorganisms.

The anaerobic bacterium Syntrophus aciditrophicus metabolized benzoate in pure culture in the absence of hydrogen-utilizing partners or terminal electron acceptors. The pure culture of S. aciditrophicus produced approximately 0.5 mol of cyclohexane carboxylate and 1.5 mol of acetate per mol of benzoate, while a coculture of S. aciditrophicus with the hydrogen-using methanogen Methanospirillum h...

متن کامل

Pyrophosphate-Dependent ATP Formation from Acetyl Coenzyme A in Syntrophus aciditrophicus, a New Twist on ATP Formation

UNLABELLED Syntrophus aciditrophicus is a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation by S. aciditrophicus However, the absenc...

متن کامل

The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth.

Biochemically, the syntrophic bacteria constitute the missing link in our understanding of anaerobic flow of carbon in the biosphere. The completed genome sequence of Syntrophus aciditrophicus SB, a model fatty acid- and aromatic acid-degrading syntrophic bacterium, provides a glimpse of the composition and architecture of the electron transfer and energy-transducing systems needed to exist on ...

متن کامل

Metabolism of benzoate, cyclohex-1-ene carboxylate, and cyclohexane carboxylate by "Syntrophus aciditrophicus" strain SB in syntrophic association with H(2)-using microorganisms.

The metabolism of benzoate, cyclohex-1-ene carboxylate, and cyclohexane carboxylate by "Syntrophus aciditrophicus" in cocultures with hydrogen-using microorganisms was studied. Cyclohexane carboxylate, cyclohex-1-ene carboxylate, pimelate, and glutarate (or their coenzyme A [CoA] derivatives) transiently accumulated during growth with benzoate. Identification was based on comparison of retentio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 195 8  شماره 

صفحات  -

تاریخ انتشار 2013